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Abstract

Purpose – This paper aims to develop a geometry of moral systems. Existing social choice mechanisms
predominantly employ simple structures, such as rankings. A mathematical metric among moral systems
allows us to represent complex sets of views in a multidimensional geometry. Such a metric can serve to
diagnose structural issues, test existingmechanisms of social choice or engender newmechanisms. It also may
be used to replace active social choice mechanisms with information-based passive ones, shifting the
operational burden.
Design/methodology/approach – Under reasonable assumptions, moral systems correspond to
computational black boxes, which can be represented by conditional probability distributions of responses
to situations. In the presence of a probability distribution over situations and a metric among responses,
codifying our intuition, we can derive a sensible metric among moral systems.
Findings – Within the developed framework, the author offers a set of well-behaved candidate metrics that
may be employed in real applications. The author also proposes a variety of practical applications to social
choice, both diagnostic and generative.
Originality/value – The proffered framework, derived metrics and proposed applications to social choice
represent a new paradigm and offer potential improvements and alternatives to existing social choice
mechanisms. They also can serve as the staging point for research in a number of directions.

Keywords Social choice, Behavioral economics, Voting theory, Mathematical morality, Mathematical

philosophy, Moral geometry

Paper type Research paper

1. Introduction
An ideal social choice mechanism is both fair and perceived as fair. Arrow famously
demonstrated that it is impossible to accommodate even three basic tenets of fairness in
ranked preference systems (Arrow, 1950), and similar results hold for other systems. Even if
anomalies are unavoidable, we can seek to reduce unfairness by minimizing their prevalence
and severity. Of equal importance, we can seek mechanisms that reduce the perception of
unfairness.

We offer a tool to address both parts of the equation. By inferring the moral systems of
individuals and constructing a suitable distance function between them, it is possible to
construct a moral geometry with attendant notions of proximity, neighborhoods and
clustering.

Ametric is amultidimensional structure and farmore versatile than the linear orders often
employed for social choice. It opens the door to a variety of new approaches, but also can
beget new linear orders for use with existing social choice mechanisms. Ametric can embody
the relationship between entire sets of views, and the very use of a precisely quantified moral
geometry may help foster a sense of inclusion and fairness.
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We begin by reifying the notion of a “moral system” (MS), equating it with a
computational black box that issues responses when presented with situations. Under
reasonable inference assumptions, such a black box can be represented by an asymptotic
conditional probability distribution (CPD). We subsequently also consider inferred or
estimated CPDs as representatives.

After formally defining our assumptions, we turn to the question of metric construction.
For a metric among MSs to be useful, it must reflect our intuition in some fashion. Direct
assertion of such a metric is untenable, and it must inherit meaning from simpler structures
through which we plausibly can codify our intuition.

The natural semantic objects are situations and responses. In a given problem, we
understand these and can characterize them in a sensible fashion. We argue that the
appropriate a priori structures are a probability distribution (PD) over situations and ametric
among responses. It is from our intuition for these that the metric amongMSs must derive its
behavior and meaning.

After discussing the specification of our a priori structures, that of the MSs themselves,
and a few related issues, we propose several applications of this framework to social choice.
We next introduce a number of related concepts, corresponding to notions of hypocrisy,
judgment, worldview and moral trajectory, and consider some additional social choice
applications involving these.

We also present several concrete, well-behaved derived metrics among CPDs and
conclude with a discussion of the use of Euclidean embeddings for selection and specification
of the a priori metric among responses.

Wewill refer to bothmetrics and pseudometrics as “metrics,” only drawing the distinction
for emphasis or when necessary. Recall that a metric is a nonnegative function d: X3 X→ X
such that (1) d(x, y) 5 d(y, x), (2) d(x, y) 5 0 iff x 5 y and (3) d(x, z) ≤ d(x, y) þ d(y, z). A
pseudometric relaxes this to allow d(x, y)5 0 when x≠ y. For most purposes, the distinction is
immaterial. Although metric-derivation procedures almost invariably produce
pseudometrics among CPDs, these usually restrict to metrics among MSs.

We will not delve into questions of empirical measurement or experimental construction.
Observation most likely would entail case histories, surveys or interviews, carefully curated
and with due regard for unreliability.

Note that our use of the term “metric” is topological, and we speak of “geometry” in
reference to distances, neighborhoods and clusters. This should not be confused with
Riemannian metrics or notions of curvature.

2. Framework
2.1 Central premise
A “moral system” (MS) embodies how an individual, institution or group responds to
situations. The central dogma of our approach is thatMSs correspond to computational black
boxes, which, under reasonable inference assumptions, have CPDs as mathematical proxies.
Through these means, the otherwise ill-defined problem of constructing a metric amongMSs
becomes mathematically well defined.

2.2 Situations and responses
A “situation” is a stimulus provided to a subject, and a “response” is a reaction of a subject to a
situation. When working with surveys, questions would be situations, and answers would be
responses. When working with judicial sentencing, cases could be situations, and sentences
could be responses.
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Wewill denote by S the set of all possible situations, and by R a set containing all possible
responses. An MS generates a response in R to any given situation in S. Situations and
responses have meaning and are the primary sources of semantics in a problem.

S is not a theoretical universe of situations. It is finite and chosen to capture the behavioral
aspects we care about. There is no concept of a basis that spans behaviors (our spaces are not
linear), but S sometimes can serve in a similar capacity.

The set of “accessible responses”RA consists of every response that can arise from theMS
under consideration with nonzero probability for some s ∈ S. It is not known to us a priori,
though we can attempt to infer it.

We require that RA ⊆ R is finite, though R need not be. It is not unreasonable to assume a
priori knowledge ofR, and thatRA⊆R, without knowingwhich subset it is. Consequently, we
can expand R as needed to admit simple parametrization or other convenient properties.

2.3 Moral systems as black boxes
The onlyway to probe anMS is through its responses to situations. From our perspective, it is
an opaque machine for determining responses to situations.

We do not assume that anMS is deterministic. A personmay not always respond the same
way to a given situation, perhaps reflecting a true stochastic element, imperfect information
or stateful evolution. Because the decision-making process is hidden from us, we cannot
attribute apparent randomness to any specific source.

We will refer to a “sample” as a single observed response by a given MS to a specific
situation. We assume that MSs act independently of one another, eachMS only responds and
evolves based on the sequence of situations it encounters, and we are not privy to its initial
state. There is no notion of synchronous sampling, and we cannot meaningfully compare the
responses of two MSs to a given situation in a single trial. We only can compare statistical
behaviors.

We have no notion of time or computational complexity or computability. As machines,
MSs are assumed to always halt and to operate in constant time. We only consider discrete
sequences of samples.

2.4 Inference assumption
Without inference assumptions, we can say nothing useful, even in the presence of unlimited
data. We adopt a form of ergodicity.

Given an MS and some PD P(S) s.t. P(s) > 0 ∀s ∈ S, we assume that (1) regardless of the
unknown initial state, the histogram of any sequence of samples with situations drawn from
P(S) will asymptotically converge to a unique P(RjS) for the MS, and (2) P(RjS) encompasses
everything relevant to us about the MS’s behavior. We will refer to it as the “true CPD” of
the MS.

This says nothing about the rate of convergence, and we implicitly also assume (3) we
have (or can produce) adequate sample data for satisfactory inference in the given
application. When studying moral trajectories in Section 4.4, we will weaken these
assumptions to allow adiabatic variation of the CPD.

Under our inference assumption, P(RjS) is the natural mathematical proxy for an MS. We
will denote by CS,R the space of all such CPDs, infinite even for finite S and R. We will denote
byX the specific set of MSs under study. This need not be fixed a priori, andmay expand. For
example, new individuals could be surveyed.

Note that a CPD obtained from finite sample data is not the true CPD of anMS, andwewill
term it an “inferred CPD.” For reasons to be discussed, we often confine ourselves to a model
subspace BS,R⊂ CS,R. Rather than the true CPD or an inferred CPD, we estimate an element of
BS,R. An estimated CPD obtained with unlimited data will be termed the “asymptotic
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estimate” for theMS, while any finite data estimate will be termed an “inferred estimate,” also
in BS,R.

2.5 A priori structures
It is on X that we seek to derive a metric. We do so by first building a metric DM on CS,R, then
restricting it to the model subspace BS,R ⊂ CS,R and finally pulling it back along the indexing
mapX→BS,R, which associates eachMSwith its inferred estimate. This is just a fancyway of
saying the metric on CS,R induces one on X in the obvious manner.

For convenience, we will useDM interchangeably for the derived metric onX,BS,R, or CS,R.
For example, DM(x, x

0) on X implicitly means DM(Px, Px0) on CS,R or BS,R, where Px denotes
whichever CPD we associate with x. Because X is discrete, we will sometimes write
Dij ≡ DM(xi, xj).

Note that we are not simply trying to find somemetric onCS,R. That could be accomplished
using the Fisher–Rao metric (Rao, 1945) or a variety of other approaches, but the resulting
geometry would be uninformative. The choice ofDM determines the utility of our framework,
and it must embody the behavioral aspects we care about.

Directly positing a metric among MSs or CPDs is very difficult. These are complicated
objects, and we generally have no intuition for distances between them. We need something
simpler and more intuitive. R and S are endowed with semantics, and it is to these we must
turn. The sets themselves do not suffice, and we require some sort of structures on them.

Our approach is to require a PD P(S) over S and a metric (or pseudometric) dR on R. It is
from these structures that DMmust derive its behavior. We will now motivate these choices.

Note that we are not simply replacing the problem of defining a metric on CS,R with a
comparably difficult one on a different space.R is much smaller thanCS,R and ismore likely to
admit a simple, intuitive metric. We are building DM from tractable components.

2.6 P(S)
Without a PD over situations, we must confine ourselves to per-situation analysis, and this is
inadequate for our purposes. We require some form of aggregation over S, and summation is
the natural choice. P(S) provides the necessary measure. It may represent an estimated
likelihood of occurrence, an importance weight or a bit of both. For certain purposes, the
interpretation of results is easiest when P(S) is a likelihood.

Specifying P(S) usually is straightforward. For example, we could empirically measure
observed frequencies of occurrence. We will assume that P(S) is strictly positive on all of S
(it is easy to introduce nominal support if not). Note that P(S) may suppress the probabilityP

s∈SP(s)P(rjs) of an accessible response r to near zero. Any derived quantity (such as DM)
effectively ignores such responses.

2.7 dR
We require an a priori choice of metric (or pseudometric) dR onR. There are reasons this is
a natural structure to employ.

P(S) only tells us how to weigh each situation when computing distances, but offers no
conduit to comparison ofMSs. Anymeaningful distance betweenMSsmust derive from some
comparator on R. The triangle inequality is very difficult to prove from scratch, but
sometimes can be inherited. We are more likely to derive a metric on CS,R from a metric on R
than from some other structure.

Another reason concerns the type of information present. Unlike MSs, responses often
have independent, objective meaning. Distances between them are something people are
more likely to agree on.
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Section 6 offers a means of parlaying intuition for distances on R into an actual metric. As
a rule, dR is less mutable than P(S). We may change P(S) to reflect new priorities or updated
frequency statistics, but dR rarely would be modified once chosen (except perhaps to test
robustness to such changes).

Note that dR is the core ofDM, and its source of semantics. It must be chosen carefully and
reflect our intuition. Although responses can be codified as finite strings, “edit distances”
such as the Hamming distance (Hamming, 1950) or Levenshtein distance (Levenshtein, 1966)
are devoid of semantics and not suitable for our purpose.

2.8 Specification of moral systems
MSs in X must be specified in some manner, either up front or as they arise. Often, they all
naturally sit between S and R, but this need not be the case. Though S, R and X each carry
semantics, their generative mechanisms may not be the same. Normalization may be
required.

2.8.1 Normalization. If an MS has natural input space I and output space O, we include in
its definition twomaps: α : S→ I tells us how to encode S for theMS, and β :O→R tells us how
to decode O. They need not be injective or surjective. If no normalization is needed, I 5 S,
O 5 R, α 5 idS and β 5 idR.

Requiring α and β for each MS is not pointless or pedantic. It would be impossible to
compareMSswithout a commonmeaning for inputs and outputs. α and β plug anMS into the
semantics of our framework and attach this common meaning to I and O.

P(S) induces an effective PD P 0ðiÞ≡Px∈α−1ðiÞPðxÞ on each I, and we can compare outputs

of different MSs via dR β1ðo1Þ; β2ðo2Þð Þ. However, dR is not a metric in this capacity, because
o1 and o2 are elements of distinct sets (we have pulled back dR : R 3 R→R along β1 3 β2 :
O13 O2→ R3 R to d* : O13O2 →R, which is a pseudometric only if O15 O2 and β15 β2,
and a metric if β1 also is injective). Any CPD P(OjI) for an unnormalized MS induces an

effective CPD bPðRjSÞ via bPðrjsÞ≡Po∈β−1ðrÞPðojαðsÞÞ.
When working with provided data, unnormalized samples may be unavoidable. The use

ofO rather than R is not an issue, and we just apply β(o). However, Imay pose a problem. If α
is not injective we may be unable to determine which s ∈ α�1(i) to adopt, and if α is not
surjective, there may be no corresponding s at all. In the latter case, we could discard the
sample, and in the former, we could randomly draw from a uniform distribution over α�1(i).
However, this constitutes an additional assumption.

2.8.2 Modes of access.AnMS is associated with something real: a person, an institution, a
decision system. We require some form of access to it, a way to acquire knowledge of its
behavior.Wewill consider three suchmodes: (1) full knowledge of the true CPD, (2) a fixed set
of sample data and (3) the ability to actively acquire sample data.

Rarely do we have direct access to the true CPD for anMS. It is large and can be difficult to
store or workwith. Instead, we generally workwith samples.Wewill not distinguish between
access modes (2) and (3). Though (3) allows efficient sampling strategies, we remain limited to
a relatively small data set.

We compute a distance between two MSs by first inferring the relevant CPDs, then
plugging these intoDM. Direct inference of the distance would be preferable from a statistical
standpoint, avoiding the undesirable inference of large intermediates (as advised against in
Vapnik, 1999). However, devising an algorithm for direct inference of distances is impractical
in most cases. The use of estimation is a good compromise, reducing the size of intermediate
objects while remaining conceptually simple.
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2.9 Estimation
CS,R is very large, and attempting to infer the true CPD is inadvisable. Inference with limited
sample data would lead to noisy results and huge hidden correlations. We typically model
CPDs using a parametrized subspace BS,R⊂ CS,R, or perhaps a discrete set of representatives.
Standard dimensional reduction techniques (such as regression) can be employed to estimate
a point in BS,R from sample data. Estimation of a few model parameters is more tenable than
inference of an entire CPD.

Practical considerations must govern the choices of BS,R and estimation procedure. We
take both as part of a problem’s a priori structure. Any sensible procedure will be agnostic to
the order in which sample data are processed.

There are reasons other than sound inference to employ estimation. The elements of BS,R

could represent idealized or canonical MSs, or we could useBS,R to isolate relevant behavioral
factors.

Note that there are two types of approximation at play. The estimation procedure confines
consideration to BS,R, but we also estimate with limited data. We obtain only an inferred
estimate in BS,R, approximating the asymptotic estimate.

Statistical learning theory has much to say about the bounds of plausible inference (see
Mitchell, 1997; Vapnik, 1999; Mohri, 2018), and we will not digress into such matters here.

2.10 Aggregation
It sometimes is useful to combine individual MSs into larger ones, either because the
aggregates are of direct interest or to improve our statistics. There are two ways to
accomplish this.

We could treat a set of MSs as a singleMS and collate the underlying samples into a single
sequence. For example, surveys from everyone in a town could contribute to a single town-
wide aggregate. This is the cleanest approach, but rather inflexible. Even a simple weighting
of the underlying MSs is difficult to efficiently implement.

Another approach is to aggregate the CPDs representing underlying MSs, and we can do
so in many ways. This type of aggregation is more expensive, because inference/estimation
must be performed on each underlying MS. However, it has advantages as well. Once those
underlying calculations have been performed, there is little cost to adopting or modifying an
aggregation scheme. For a model, we may directly aggregate parameters rather than CPDs.

2.11 Units and scaling
It may be tempting to think of distances as taking units, much as Euclidean distances do.
However, this need not be the case for a general metric.

For units to make sense, a distance of fixed numeric value must have the same meaning
everywhere. A mile in Michigan is the same as a mile in Florida. This amounts to translation
invariance, which derives from a linear structure.CS,R is not a vector space, andR need not be.
Translation invariance on such spaces must be inherited, and this is accomplished through
isometric embedding. If the metric on CS,R or R has a Euclidean embedding, we may define
units on that space. These units only make sense in the specific embedding coordinates (or
those related by Euclidean isometries), which may not be intuitive or natural for us.

We also may wish to consider the relationship between DM and dR. If dR is a metric, so is
c $ dR for any c > 0. Ratios of distances will be unchanged (though if dR is not translation
invariant, a given numeric ratio value will not have the same meaning everywhere).

DM depends on dR via some derivation procedure, and we can ask whether it scales with
dR. To do so, DMmust be homogeneous to some fixed degree in dR. This need not be the case,
but often is in practice. TheDM candidates presented in Section 5 all are homogeneous in dR to
degree 1. In that two-step procedure, the metric D among PDs over R is homogeneous in dR,
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and the metric DM is homogeneous in D. Many common operations such as integration
preserve homogeneity.

When dR andDM both take units andDM is homogeneous in dR of degree n, units of [L] for
dR induce units of [L]

n for DM. If both take units but DM is not homogeneous in dR, their units
are unrelated. We must be cautious interpreting results in that case. The use of unrelated
units can be quite counterintuitive, and a change of scale for dR could affect comparisons,
ratios or induced linear orders on DM.

Our framework is of greatest utility when dR and DM both admit units and DM is
homogeneous in dR, and we will assume this going forward. This constrains the admissible
methods of deriving DM from P(S) and dR.

In Section 6, we will discuss the use of Euclidean embeddings for visualization and metric
construction. The present requirement that dR andDM take units is different. All we need are
isometric embeddings in somemetric vector spaces.We do not require Euclidean embeddings
or low-dimensional ones, though these may yield more intuitive coordinates. When an exact
isometric embedding of DM is not possible, an approximate one may suffice. In that case, the
approximate DM is translation invariant and should be used for calculation. We speak here
only of embedding for units, not visualization. The latter is just a nicety and does not affect
calculation with DM.

Note that we only require an embedding of DM on X, not of DM on all of CS,R or BS,R.
Nonetheless, an embedding of BS,R is preferable when possible. A single element added to X
could drastically alter its embedding, but would not affect that of BS,R.

2.12 Proximity, neighborhoods and clusters
DM endows X with meaningful notions of proximity and neighborhood. An e-ball (or
e-neighborhood) of x ∈ X is {y ∈ XjDM(x, y) < e}, and these form the basis for a nontrivial
topology on X.

The notion of neighborhood brings a wide array of mathematical tools. We have a
geometry of MSs, and it sometimesmay be visualized using an approximate low-dimensional
Euclidean embedding (Section 6).

We also may identify clusters, sets of MSs whose intra-cluster distances are small relative
to inter-cluster ones. For example, we could use a cutoff ratio r∈ (0, 1) and say that {x1. . .xn}
form a cluster iff DM(xi, xj)/DM(xi, y) < r for all xi, xj in the putative cluster and all y outside it.
r is dimensionless, and clusters embody a notion of nearness independent of units. Not all
metric spaces exhibit useful (or any) clustering.

The presence of a cluster of MSs does not imply its members form a group in any non-
statistical sense. They may be unaware of one another, unaffiliated or comprise many
different social groups. In fact, statistical clusters may prove entirely incongruous with
preconceived notions of political or ideological alignment.

Because X is finite, distances on it are bounded, and we can derive a number of natural
length scales. Any of these may be chosen as the unit, or explicitly serve as the divisor in a
dimensionless ratio. Examples are themean andmaximumdistances between distinct points:
Davg ≡

1
jX jðjX j− 1Þ

P
i∈S

P
j∈S Dij and Dmax ≡ maxi,j∈S Dij. Note that CS,R and BS,R need not be

compact, and we generally cannot do something analogous on them.

2.13 Participants and indexing
Most systems we care about have a notion of “participants”: individuals, judges, institutions,
etc. We will denote the set of these Y, and it may grow if X does.

In the simplest case, each y ∈ Y is associated with a single MS via a labeling map Y→ X.
However, it sometimes makes sense to assign multiple labeled MSs to each participant.
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We will denote the labeling set J and the labeling map g: Y3 J→ X. We always assume g is
bijective.

For example, suppose we have two surveys per person, the first asking what they believe
and the second asking what they think other people believe. Then, J 5 {self, other}, and g
would identify the “self” and “other” surveys for every person. This information must be
available to us, perhaps as part of the survey label. The map g (and any procedure for
adapting it if J or X expand) is part of the specification of a problem.

The notions of participants and indexing will find use when we define hypocrisies and
related concepts in Section 4.

3. Social choice
Deferring the question of how to deriveDM, let us consider how our framework could apply to
questions of social choice. In this and Section 4, we will not concern ourselves with which
CPDs are used to represent MSs. The discussion applies equally well to true CPDs, inferred
CPDs, asymptotic estimates or inferred estimates.

There are two primary modes of application to social choice: (1) DM serves as a diagnostic
tool for existing social choice mechanisms, ascertaining whether broad acceptance is
attainable, the degree to which compromise is possible, which groups likely would be
alienated and the anticipated extent of disaffection; and (2) DM spawns new social choice
mechanisms, for use in lieu of or conjunction with existing ones. We offer a few examples
below, and there are myriad others.

Our examples are illustrative but simplistic, and any real application must address
nontrivial questions of measurement and feasibility. Let us suppose there is a representative
set of major political issues, and that S, R, P(S) and dR have been chosen to sensibly model
individuals’ views on these issues, perhaps through surveys or interviews.

An MS embodies this behavioral information in some fashion, as does the CPD that
represents it. We will assume the true and perceived social choice mechanism are the same
and fully visible to all participants. Without yet designating what constitutes a social choice
in this context, wewill use the terms “approval” to refer to an individual’s degree of happiness
with a particular outcome and “acceptance” to refer to an individual’s perception of the
fairness of the mechanism by which it was reached.

3.1 For social choice diagnostics
A geometry of MSs can offer a variety of insights. The clustering or diffuseness of points can
signal whether broad approval is possible through any social choice mechanism.

If MSs are arranged in two distant clusters, any outcome either moderately displeases
everyone or strongly displeases one cluster, while a diffuse cloud of MSs admits a greater
range of compromises. Though the total disapproval may be similar in both cases, the degree
of acceptance may differ. Almost any social choice mechanism risks disaffection in the
presence of strong clusters, while almost any sensible mechanism is likely to find acceptance
in the diffuse case.

This example may seem trite, but without a metric, we could at best speak in terms of a
single issue. Awell-constructedDM allows us to incorporate all issues into a unified geometry.

We implicitly treated social choice outcomes as MSs (or perhaps points in BS,R). This
sometimes makes sense, but often does not. Let us consider an example of each.

Suppose we have a set V of candidates for office. These have MSs, and we will just treat
them like a subset of voters V ⊂ X. We have a small set of points in BS,R representing
candidates, and a much larger set representing voters. DM encapsulates all relevant issues,
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not just one. If certain issues are expected to be paramount in the election, P(S) could be
adjusted so that DM reflects that emphasis.

A quantity like Dc ≡ maxi,j∈V Dij measures the dispersion of candidates, and we could
calculate their diversity relative to voters via Dc/Davg. Candidates tightly clustered relative to
voters do not offer much choice, and the election would feel pointless regardless of the voting
mechanism. The absence of such clustering does not guarantee acceptance. Candidates still
must be suitably distributed relative to the voting population.

Let f(r) denote the fraction of voters within radius r of any candidate, with inverse r(f)
denoting the minimum radius r at which a fraction f of voters would be within range of some
candidate. These could serve as measures of available choice, or to furnish threshold criteria.
For example, we could demand that 80% of voters have a candidate within 0.2Davg of them
(r(0.8) < 0.2Davg or f(0.2Davg) > 0.8), and no more than 5% of voters must pick a candidate
0.5Davg away (r(0.95) < 0.5Davg or f(0.5Davg) > 0.95). Note that such constraints only address
the variety of candidates. Other facets, such as the social choice mechanism itself or
aforementioned voter clustering, may play a major role in acceptance.

Let us now consider social choice involving a single issue, perhaps via referendum or
legislation. LetO be the set of possible outcomes, and suppose that any element ofBS,R favors
a single outcome as reflected in some known f : BS,R → O. This could be a complicated
function, or as simple as argmaxo∈O P(ojs) ifO⊂ R and some s∈ S directly probes that issue.

Any well-behaved f partitions BS,R into subspaces, each representing adherents to a
particular outcome. Let lo;i ≡minP 0∈f−1ðoÞDM ðP 0;PiÞ denote the geometric distance from a
voter’s MS (embodied in CPD Pi) to the surface representing outcome o. A quantity like the
mean distance of voters from a given surface (lo ≡ (

P
i∈Xlo,i)/jXj) could furnish a quality

measure for any given outcome o. This in turn could be used to rate the actual performance of
various social choice mechanisms.

3.2 As a mechanism for social choice
Wealsomay useDM to build novel social choicemechanisms. Each diagnostic example above
has a corresponding metric-based choice mechanism. In fact, we could use the departure of
existing social choice mechanisms from these as a diagnostic tool in itself.

As before, choices involving candidates or schools of thought have outcomes represented
by points in BS,R. We only can compute quantities such as centroids in the presence of a
Euclidean embedding of BS,R (rather than just X), and we will not assume one.

One approach would be to define a utility function u(i ∈ V) ≡
P

j∈Xf(Dij) representing
displeasure, where f is some function that maps distance to displeasure (e.g. f(d) 5 d2), and
select the outcome that minimizes it via argmini∈V u(i).

We may want to impose constraints and could implement these in several ways. Hard
constraints, such as Dij < t (i ∈ V, j ∈ X) for some distance t and fraction r of voters, can
prevent undesirable scenarios, but risk excluding all outcomes. An alternative is to adjust u(i)
via a penalty term. These are just two examples, and most of the playbook of general
optimization theory can be brought to bear.

Returning to our single-issue example, the corresponding social choice mechanism would
pick argmino∈O lo, the surface that minimizes the mean distance to voters.

In principle, it may be possible to entirely replace voting with a metric-based social choice
mechanism. TheMSs encompass full sets of views onmajor issues. Once we know them (with
possible adiabatic adjustment as needed), each election differs only in the choice of candidates
and the relative prominence of issues. We once again could account for the latter via changes
to P(S), if accomplished in a manner that defies objection.

Given a snapshot of the voters’ and candidates’MSs, the selection process then becomes
automatic. We have ignored obvious practical concerns (such as how to obtain the MSs and
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potential gaming of the system), and this approach would prove utterly impractical in real
elections. However, it may have other uses. Comparison of derived outcomes with actual
election results serves as an additional diagnostic tool and can help identify whether an
existing social choice mechanism is fair or representative.

4. Related concepts
Many applications have some additional structure that allows us to define quantities
reflecting notions of hypocrisy, judgment of others, worldview and moral trajectory. These
can serve as aids to social choice or furnish additional mechanisms. Throughout this section,
we will assume the concept of participants, as discussed in Section 2.13.

4.1 Hypocrisies
The purpose of our framework is not to judgeMSs as better or worse than one another, but to
measure distances between them. In this sense, it is agnostic to theMSs involved. Evenwithin
the confines of this moral relativism, an individual still may be judged against himself. Given
a nontrivial indexing set J and map g : Y 3 J → X, we can define a set of jJ jðjJ j− 1Þ

2 distances
between the MSs of any given participant y ∈ Y. We will term these the “hypocrisies” of y,
denoted hij(y) ≡ DM(g(y, i), g(y, j)) for i, j ∈ J.

For example, suppose each person has three associated MSs (J5 {p, a, b}): (p) that they
claim, (a) that they exhibit and (b) that they believe in or aspire to. We will ignore how one
practically would ascertain (p) or (b).

Loosely speaking, hpa corresponds to a notion of true hypocrisy (“Do as I say, not as I do”),
hpb could be termed superficial hypocrisy (“Do as I say, but what I say differs for you andme”)
and hab relates to courage of one’s convictions (“I do as I do, not as I should”). This is a vast
oversimplification, but vast oversimplifications often prove useful.

The presence of hypocrisies allows us to define various ratios and linear orderings.We can

(1) compare two hypocrisies for a given participant hijðyÞ≤
?
hklðyÞ, (2) compare the same

hypocrisy for two different participants hijðyÞ≤
?
hijðy0Þ, (3) induce a weak linear order on Y for

each hypocrisy using (2) thus ranking participants despite the absence of a linear order on X,

(4) compute the dimensionless ratio hij(y)/hkl(y) (suitably controlled for zeros), (5) compute

the dimensionless ratio hij(y)/hij(y
0) (suitably controlled for zeros), (6) construct a pseudometric

DJ; y on J for each y ∈ Y by pulling DM back along g(y, $) : J → X (unsurprisingly,

DJ; y(i, j) 5 hij(y)).
Note that it does not matter where we getY, J and g. If we have those components, wemay

define a set of hypocrisies. The essential element of hypocrisies is that they are defined for
each participant without regard to any other.

4.2 Judgment
Hypocrisies constitute an inward-facing view of a person. We cannot judge those MSs in
isolation, but can judge their constellation for a given participant. Let us now consider an
outward-facing view. We will initially assume J is trivial (so g : Y → X).

There is no preferred MS or participant in our framework, but we can ask how the world
appears to any givenMS or participant. MSs and participants are equivalent here, but will not
be when we consider nontrivial J, so we will consider them both.

MS x sees x0 at distanceDM(x, x
0), andwehave functionKx : X →RgivenbyKx(x

0)≡DM(x,x
0).

This is what theworld looks like to x, and defines pseudometric ~DM ;xðx0; x00Þ≡ Kxðx0Þ−Kxðx00Þj j
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onX, the pull-back of the Euclideanmetric alongKx. There is nothing special about the Euclidean

metric here, but with other metrics on R, the resulting ~DM ;x would not be as intuitive.
To see how ~DM ;x differs from DM, consider level sets. The level sets of DM relative to x are

(indexed by l ≥ 0) {x0 ∈ XjDM(x, x
0)5 l}. They partition X, and ~DM ;x is a metric among them.

~DM ;x does not care about the directions of x
0 and x00 relative to x, just their distances from it

under DM.
Analogous definitions hold with respect to Y. We define ~Kyðy0Þ≡KgðyÞ gðy0Þð Þ. For given

y ∈ Y, we have an induced metric on Y given by ~DY; yðy0; y00Þ≡ ~Kyðy0Þ− ~Kyðy00Þ
��� ���. ~Ky is how

participant y sees the world.
Taking a cue from this, we define a “judgment” to be any non-negative map ~K : Y →R. A

judgment induces a linear order onY via ~KðyÞ ≤? ~Kðy0Þ and a distance onY via ~KðyÞ− ~Kðy0Þ
��� ���.

A choice of ~K is a preferred standard of judgment and constitutes extra information. One of our
~Ky’s could serve, but that requires choosing a specific y. Note thatwe equallywell could define a
judgment as K : X →R.

Suppose we have a preferred judgment ~Ky and denote by FY the space of non-negative

functionsY →R. Every ~Ky ∈FY , as is ~K. For any functionA : FY →R, we can define ametric

on FY as DFY ð~K; ~K
0Þ≡ Að~KÞ−Að~K 0Þ

��� ���. We also could compare ~Ky and ~Ky0 for two

participants this way. As an example, we could defineAð~KÞ≡ jY j−1Py∈Y
~KðyÞ. In this case,

DFY
ð~K; ~KyÞwould represent how closely aligned y’s perception of the world is with that of ~K,

through the lens of the arithmetic mean. Note that we could do the same with functions
A : FY →Rn for any n > 0.

Let us now generalize to nontrivial J. Judgments defined in terms of X are unchanged, and
K : X →R remains the same under the new definition. In terms of participants, things are a

little different. The equivalent map now is ~K : Y3J →R, and this defines a “judgment.” ~Ky is

replaced with ~Ky;i, and to prefer one requires a choice of both the participant and index. It also
is possible to deal with nontrivial J by confining ourselves to a preferred choice of j ∈ J, but
this is tantamount to a trivial J with restricted Xj ≡{g(y, j)jy ∈ Y}.

In the presence of nontrivial J, any choice of judgment ~K yields an alternate set of

hypocrisies ~hijðyÞ≡ ~Kðy; iÞ− ~Kðy; jÞ
��� ���, those seen through the lens of ~K rather than DM. If ~K

is chosen to be ~Ky;i for some y and i, then ~hijðyÞ ¼ hijðyÞ and ~hjkðyÞ ¼ hijðyÞ− hikðyÞ
�� ��.

4.3 Worldview
The ~Ky are views of the world implied byDM and may not reflect participants’ actual views. We

do not know those actual views, and they would have to be supplied. A judgment ~K for each
participant will be termed a “worldview.” It is a map η : Y→ FY, assigning a judgment to each
participant. Any map A : FY →Rn induces a map A◦η : Y →Rn. We will denote by bη the

worldview induced by DM. Clearly, bηðyÞ ¼ ~Ky. For simplicity, we will once again assume J is
trivial.

A choice of η allows us to speak not only of a participant’s MS, but how they view other

MSs. Though we are unlikely to be supplied with an explicit worldview, a distinct metric D0
M

would generate a different worldview bη 0
, and for purposes of comparison, it may be useful to

treat bη 0 as externally imposed relative to DM.bη is symmetric and represents theway two participants see one another through the lens of

DM. But worldviews need not be symmetric in general, and participants’ views of one another
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may not be reciprocal. In that case, it may make sense to define a “difference in mutual

esteem” as something like ηðy; y0Þ− ηðy0; yÞj j.

4.4 Moral trajectory
It sometimes is useful to relax our inference assumptions and allow slow variation of an MS.
In place of ergodicity, we require that (a) our sample data be divisible into cohorts and (b)
within each cohort, we have adequate data to infer the relevant CPD to our satisfaction. The
cohorts need not be disjoint. We will define a “moral trajectory” to be a sequence of MSs
obtained from cohorts of data for a single participant.

Time has not played any role in our framework so far, but this does not matter. We only
require ameans of segmenting our data into cohorts. External time intervals can serve, but so
could other criteria. As long as our relaxed inference assumption applies to the cohorts, we
are fine.

As an example, consider judges issuing criminal sentences. Rather than simply comparing
MSs of different judges, we may wish to study the evolution of a given judge’s MS over time.
We could break our case history into year-long intervals and treat each as an independent
MS. This opens the door to a variety of time-series tools, and we could study correlations
between moral trajectories of different judges, etc.

Suppose we have a timeframe [0, nΔ] broken into intervals of lengthΔ and have sufficient
sample data in each interval to adequately infer a CPD. Denoting the sequence of inferred
CPDs (v1. . .vn), there is a sequence of distances (DM(v1, v2), . . ., DM(vn�1, vn)). From this, we
could compute various moments, autocorrelations, etc. Given two such sequences, we also
could compute correlations, etc.

4.5 Applications to social choice
Let us briefly consider a few of themanyways these concepts could be applied to social choice
theory.

Any single hypocrisy induces a linear order among participants, and this could power any
order-based social choice mechanism (e.g. ranking candidates).

We also could use hypocrisy statistics from a limited subset of participants to adjust our
global geometry. For example, consider two MSs per person: xc(y) is that claimed, and xa(y) is
that observed. Let us assume access to xc(y) for everyone, perhaps through surveys or
interviews, but access to xa(y) only for a small subset of public figures (those with voting
records, judicial histories, etc.). We could construct a PD P(h) over hypocrisy from the known
subset and apply it to the unknown subset. Note that we cannot infer or sample the unknown
xa(y) itself, only its CPD. Denote by Pc(y) and Pa(y) the CPDs representing xc(y) and xa(y). In lieu
of Pa(y), we have a PD over points inBS,R. To sample it, we first draw h according to P(h), then
sample uniformly within the level set {DM(Pa(y), Pc(y)) 5 h}.

We could perform Monte Carlo analysis by sampling each Pa(y) in this fashion, either in
service of our own social choice mechanism or to test the robustness of another mechanism to
such fuzziness. If demographic or other labeling data l(y) are present, we could infer P(hjl)
rather than P(h) from the known hypocrisies. Sampling each Pa(y) fromP(hjl(y)) couldmitigate
some of the (substantial) selection bias in our example, but at the cost of noisier inference.

Known hypocrisies of politicians also could be used to penalize candidates when a utility
function is employed for social choice. More generally, hypocrisies offer a useful measure of
fuzziness and may warn us of potentially unreliable results. Quantities such as judgment,
worldview and mutual esteem can be employed to measure polarization and the likelihood of
disaffection or to test the robustness of results to geometric fuzziness as in the hypocrisy
scenario above.
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They also can be used to emulate individual decision-making. Any given DM generates a
worldview, a judgment for each participant. Though this incorporates information about the
individual’s MS, it may not reflect their true judgment. This is not a matter of inference or
hypocrisy. A worldview contains far more information than a metric, and DM necessarily
distills out certain aspects. Survey-based knowledge of MSs is plausible, but knowledge of
true judgments is not. DMmay be all we have to work with, and a noisy DM at that. However,
this is not a dealbreaker. Ametric-based emulationmechanism need not precisely reflect each
individual’s voting choice. It only must do so statistically and arrive at the correct overall
election result. For example, we could emulate individual voting by ranking candidates
according to each individual’s ~Ky. In principle, we could replace voting altogether with a
mechanism for MS acquisition and maintenance. This likely would be an awful idea in
practice, but suggests that automatedmechanisms along these lines may be worth exploring.

Moral trajectories could be used to detect convergent or divergent judicial behaviors, the
impact of structural changes to mechanisms informing or effecting social choice, or sudden
changes in behavior. Large changes in the geometry of voters or candidates or (most
alarmingly) the two relative to one another could signal tectonic social shifts, which merit
careful examination and possibly even reconsideration of the mechanism of social choice.

5. Metrics among conditional probability distribution
Wenowoffer several methods of deriving ametric (or pseudometric) onCS,R fromP(S) and dR.
In this section, we will be careful to distinguish metrics from pseudometrics. Our approach is
to break the problem into two parts: (1) from dR derive a metric or pseudometric D on PR, the
space of PDs over R, and (2) from P(S) and D, derive a pseudometric DM on CS,R.

5.1 Pseudometric vs metric
Note that almost any plausible methods, including our own, result in pseudometrics rather
than metrics on CS,R. We almost always must sum, integrate or average over P(S) in some
fashion, and this introduces degeneracy with near certainty. It turns out this is not a problem
for two reasons.

A pseudometric suffices for most applications of our framework. Coincident points do not
pose a problem for the techniques mentioned, and rarely do at all. It also turns out that we
almost always end up with a metric on X, the set we actually care about. This is because X is
small. DM on X is just the restriction of DM on CS,R to the particular set of CPDs representing
X. Unless DM is enormously degenerate on CS,R, or some aspect of a given problem conspires
to retain degeneracy, the probability that degeneracies will survive restriction to X is tiny.
The same holds if dR is a pseudometric, and this is one reason why a pseudometric is
sufficient in that role.

5.2 Some metrics on CS,R
The central obstruction to deriving metrics or pseudometrics ab initio is the triangle
inequality. This is part of what motivated dR as an a priori structure. Though we will not
include proofs here, we observe that they depend heavily on two principles: (1) the pull-back
of a metric is a pseudometric or metric and (2) the weighted average of a family of metrics is a
pseudometric or metric.

In addition to beingmetrics or pseudometrics, our candidates pass certain sanity tests. For
strongly peaked distributions, we require that D resembles dR, and DM resembles D. In what
follows, w can be any strictly positive weight on R.

The following two candidates for D are pseudometrics. Here, P, Q are PDs over R (i.e.
elements of PR), and the ± are in tandem.
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DðP;QÞ≡
Z
R

dx

Z
R

dy wðxÞ wðyÞ dRðx; yÞ ðPðxÞ±PðyÞÞ2 � ðQðxÞ±QðyÞÞ2
� ����� ����

Given P(S) and a choice of D, there are two straightforward choices for DM. Here, f, g are the
function forms of CPDs P(RjS). For example, f : S → PR yields a PD over R for each s ∈ S.

D
ð1Þ
M ðf ; gÞ≡

X
s∈S

PðsÞD f ðsÞ; gðsÞð Þ

D
ð2Þ
M ðf ; gÞ≡D

X
s∈S

PðsÞf ðsÞ;
X
s∈S

PðsÞgðsÞ
 !

When D is a metric, D
ð1Þ
M is a metric, and D

ð2Þ
M is a pseudometric. Note that the dependence on

dR is implicit in D.

6. Euclidean embeddings of dR and DM

An isometric embedding of metric space (Z, d) in metric space (Z 0, d0) is an injection i : Z→ Z 0
that is metric-preserving

�
dðz1; z2Þ ¼ d0 iðz1Þ; iðz2Þð Þ�, and a Euclidean embedding is an

isometric embedding inRn (endowed with the Euclidean metric). We will refer to a Euclidean
space or embedding as “low-dimensional” if n5 1, 2, or 3. Our ability to visualize is limited to
low-dimensional Euclidean spaces, and it is easiest to work with these.

Our framework features twometrics: dR andDM. A Euclidean embedding can assist in the
a priori choice and specification of dR and in the visualization of a derived DM. The
assumption that both metrics take units implies they have isometric embeddings in metric
vector spaces, but these need not be low-dimensional or Euclidean.

6.1 Euclidean embeddings
Young and Householder identified the criterion for a Euclidean embedding to exist (Young
andHouseholder, 1938). Let Z5 {z1. . .zn} and dij be the distancematrix for (z1. . .zn�1) relative
to zn. A Euclidean embedding of d exists iff the (N � 1) 3 (N � 1) matrix

Bij ≡
1
2 d2in þ d2jn − d2ij

� �
has only nonnegative eigenvalues, in which case rank B is the

minimal embedding dimension. More efficient methods exist for actual calculation (see
Crippen, 1978).

Exact Euclidean embeddings are rare, and low-dimensional ones are rarer. In most cases,
an approximate embedding must suffice. Metric multidimensional scaling (MDS) is a method
that replaces Young and Householder’s B matrix with a lower-rank surrogate in a manner
closely resembling principal component analysis (PCA). Details can be found in Eckart and
Young (1936), and an alternate approach is offered inMatousek (2002, 2013).We canmeasure
the quality of an approximate embedding in a variety of ways, such as the fraction of absolute
eigenmass captured.

6.2 Visualization of DM

DM is derived rather than chosen, and we cannot expect it to have an exact low-dimensional
Euclidean embedding. An approximate low-dimensional Euclidean embedding is possible,
but may be of low quality. If the top three eigenvalues do not comprise most of the eigenmass,
then too much information may have been lost. Since our purpose is visualization, this
determination is subjective. We can produce a picture, but it may not be representative or
useful.
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6.3 Specification of dR
The selection of dR often is the most difficult aspect of our setup. It is less mutable and more
critical than the choice of P(S), and there is no obvious way to go about it, except in the
simplest cases.

dR is not just a pretty face. It is the core structure fromwhichDM derives, and the utility of
the framework relies on dR embodying a sensible intuition for distances on R.

Rarely does a natural dR present itself, and R may be a complicated space. We often must
leverage piecemeal intuition for distances into a precise metric, and a Euclidean embedding
can help.

Were there a single correct dR, this would not be the case. A general dR is unlikely to have a
reasonable-dimensional exact embedding or a sufficiently high-quality approximate one, and
the crucial role of dR will not brook lower quality.

However, our imperfect intuition bestows a degree of flexibility. We are doing
something akin to heuristic embedding, much as an artist may render vague visual
concepts into a cogent scene. Rather than a single correct dR, there usually is a set of
plausible candidates that fit our intuition. Practical or other considerations may further
restrict this set, but it generally remains well populated. We will denote it Sd. Absent other
criteria, any element of Sdmay be selected as dR. Robustness to that choice is a good test of
the framework.

The larger Sd, the more likely there exists a reasonable-dimensional exact (or high-quality
approximate) Euclidean embedding of at least one metric d ∈ Sd. This may not be low-
dimensional, but sometimes can be constructed from low-dimensional component
embeddings in a fashion we now describe.

To avoid excess verbiage, we will define a “Euclidean proxy,” to be either an exact
Euclidean embedding or a sufficiently high-quality approximate Euclidean embedding (one
that does not lose relevant information). We do not assume Euclidean proxies are low-
dimensional, but do require them to be of manageable dimension (i.e. not intractably large).

6.3.1 Subdivisible Euclidean embedding of dR: example. It sometimes is possible to
construct a higher-dimensional Euclidean proxy from easily visualized pieces. Certain
systems, including many that arise in practice, have an R that naturally decomposes into
semantically distinct components. We can try to construct a low-dimensional Euclidean
proxy for each component, and then glue these together.

Consider a judicial sentencing frameworkwhereMSs arise from judges, S is a set of crimes
and R is a set of punishments. Judges are presented with crimes, and they issue fines and/or
jail terms. A point inR has natural coordinates (f, p), where f is in dollars and p is in years. Note
that dollars and years are not units. R is not a vector space, and we have not posited
translation invariance. f and p happen to be numeric labels, but have no more structure than
lexical labels would.

Wemay not have direct intuition for the distance between ($5000, 4y) and ($30000, 1y), but
we do have a sense of distances between two fines or two jail terms. Among other things, fines
and jail terms each have a meaningful linear ordering.

Let us assume that fines are translation invariant in coordinates of dollars, corresponding
to an exact embedding in R via h(f) 5 f (i.e. assigning the numeric label its numeric value),
with corresponding metric d1(f1, f2) 5 jf1 � f2j. It now makes sense to refer to dollars as the
“unit” for fines.

For jail terms, let us suppose this is not the case. Perhaps a one-year difference in jail term
does not have the same marginal impact on a one-year sentence as on a ten-year sentence.
Instead, we will assume a doubling of sentence has uniform significance (an unlikely
perspective but suitable for illustration). This corresponds to an embedding in R via
h2(p)5 (c1þ c2 ln x) for constants c1, c2 (in practice, wewould probably employ something like
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ln(p þ 1) to avoid singularities near the origin). Choosing c1 5 0 and c2 ¼ 1
ln 2, we

get d2ðp1; p2Þ ¼ jlog2p1p2j.
Translation invariance only holds in the embedding coordinates, and jp1 � p2j has no

universal meaning. Only jlog2p1p2jhas the samemeaning everywhere, allowing the use of units.
Wewill define unit 1T (for “term-doubling”) to beΔ log2 p5 1. Taking f5 0 and log2 p5 0 as
the coordinate origins, ($5000, 4y) becomes ($5000, 2T).

To obtain a Euclidean proxy for dR, we must relate the scales of the two coordinates. If we
deem $20000 equivalent to one term-doubling, we can write our point as ($5000, $40000) in
unified units of dollars.

We now have an embedding in R2. In terms of our original coordinates, it

is dRð½f ; p�; ½f 0; p0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf − f 0Þ2 þ 200002ðlog2ðp=p0ÞÞ2

q
.

6.3.2 Subdivisible Euclidean embedding of dR: general case. Suppose in a problem, (1) every
response can be decomposed into n distinct conceptual components: R⊆

Qn
1Ri, (2) we have clear

intuition for distances within each Ri and (3) we have some sense of how much each Ri should
contribute todR. Note thatRneed only be separable semantically, not statistically or structurally.

For each Ri, we attempt to build a low-dimensional Euclidean proxy hi : Ri →Rni (with
ni≤ 3). If the Ri are small, simple spaces, such proxies are quite plausible. The corresponding
metrics then are di(x, x

0) ≡jhi(x) � hi(x
0)j.

To combine the di into dR, we require a set of distance conversion factors. Let cij> 0 denote
the distance in Rj corresponding to unit distance in Ri. These must satisfy cik 5 cijcjk, cii 5 1
and cij 5 1/cji, and they comprise n � 1 independent values. Though their effect is simply to
scale the embeddings hi → ci1hi for i 5 2. . .n (with di adjusted accordingly), they are not
superfluous. The Euclidean proxies for the Ri are built in isolation, and their scales are
arbitrary. We must adjust them to reflect our intuition for relative contributions, and the cij
provide the necessary lever.

The resulting metric is dRð½r1 . . . rn�; ½r01 . . . r0n�Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1c
2
i1ðhiðriÞ− hiðr0iÞÞ2

q
where

ri ∈ Ri and r0i ∈R0
i are expressed in unembedded coordinates.

This approach still is very restrictive, andwe only can represent a small fraction ofmetrics
this way. Aside from the need for a semantic decomposition of R, and low-dimensional
Euclidean proxies for all the Ri, the conversion factors also impose a big constraint. They
require that the relativemeaning of distances inRi andRj be the same everywhere. Otherwise,
we could not glue themwith a simple, global scale factor. If such a constraint is unacceptable,
this method cannot be used.

Fortunately, conceptual decomposition is organic to many problems. In applications
where we have the flexibility to choose R, this may motivate our choice. Also, we always can
try to expand an existing R into a suitable space.

Althoughwe could try something similar with non-Euclidean embeddings, wemade implicit
use of a special property of Euclidean spaces: Euclidean metrics can be combined using a
Euclideanmetric.Allp-normmetricshave thisproperty, butmost other families ofmetricsdonot.

7. Conclusion
The framework described has broad applicability. Although our discussion centered on MSs
and social choice applications, any decision system that can be framed in suitable terms may
be analyzed using our methods. Examples could include customer satisfaction, political
intelligence, judicial analysis and business planning.

There are many possible directions of future research. Our exploration of derived metrics
(distilled to the selection presented in Section 5) was by no means exhaustive. Each metric
captures certain facets of behavior, and additional candidates would mean greater flexibility.

Questions of stability relative to changes in underlying assumptions and components are
important and deserve attention in any real application. Lack of robustness of DM to small
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changes in S, R, P(S) and dR can impair its utility. It also should be stable in the face of minor
changes to BS,R, the estimation method or aggregation procedure. Conceptually small
changes in the framing of a problem should not drastically alter results.

We have said little about practical issues of data acquisition, cleaning or curation. These
are of critical importance in any application, as is the relevance of those data. In addition to
standard empirical issues, there may be specific ones surrounding our particular
combinations of inference, estimation and Euclidean embedding. Our earlier comments
notwithstanding, direct inference of distances also may be worth exploring.

The potential applications to social choice are myriad. We mentioned a few, briefly and
imprecisely. Each of these could prove beneficial or interesting. The idea of using static or
adiabatic knowledge of MSs to automate decisions may have applications in diverse fields,
replacing frequent, burdensome social choices with upfront data acquisition and some periodic
maintenance. A great deal more can be said about optimization of utility functions, constraints
and cluster analysis as well. All these topics may provide fruitful avenues of inquiry.
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